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Propagation of solitons in a randomly perturbed Ablowitz-Ladik chain
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This paper deals with the transmission of a soliton in a discrete, nonlinear, and random medium. A random
lattice nonlinear Schidinger equation is considered, where the randomness holds in the on-site potential or in
the coupling coefficients. We study the interplay of nonlinearity, randomness, and discreteness. We derive
effective evolution equations for the soliton parameters by applying a perturbation theory of the inverse
scattering transform and limit theorems of stochastic calculus.
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I. INTRODUCTION for soliton propagation phenomena. One can find in the lit-
erature a few papers that deal with this problaé—18. All
This paper is concerned with the competition betweerof them apply the collective variable approximation or the
randomness and nonlinearity for wave propagation phenomaveraged Lagrangian approach, where the solution is sought
ena in the one-dimensional case. As is well known, in onein a solitonlike form with time-dependent parameters. Then
dimensional linear media with random inhomogeneitiesthis ansatz is substituted into the Lagrangian of the system,
strong localization occurs, which means in particular that theso that a finite-dimensional system of ordinary differential
transmitted intensity decays exponentially as a function okquations is obtained for the set of soliton parameters. The
the size of the mediurfil—3]. On the other hand, in homo- most significant drawback of this method is that it neglects
geneous nonlinear media, wave packets called solitons caadiation effects. The main result is obtained by Scharf and
be generated. They propagate without change of form anBishop[16]: they considered a smooth potential on the one
with constant velocities over very large distanp@s A great  hand and an impurity potential on the other hand. They
deal of work has been devoted to the transmission of a solishowed that the collective variable approach is efficient
ton through a slab of nonlinear and random medium, espewhen dealing with a slowly varying potential in the sense
cially in the case of the one-dimensional nonlinear Schrothat it is almost constant at the scale of the soliton width. We
dinger (NLS) equation with cubic nonlinearit}5]. Kivshar  shall consider more general types of perturbations, and pro-
et al. [6] obtained results in the case of a random mediunceed under a different asymptotic framework. Our main con-
consisting of pure point impurities with a very low density tribution is that we use the inverse scattering transform, so as
which affect only the potential. In such conditions the au-to take into account both the variations of the soliton param-
thors showed that there is a threshold below which the pulsesters and the radiation effects. Both effects and their inter-
decay quickly. This fact was experimentally observed in Refplay are important, and cannot be neglected when the corre-
[7]. In Ref. [8] we considered the NLS equation, and as-lation length of the potential is of the same order as the
sumed that inhomogeneities affect the potential and the norsoliton width. The interaction of different length scales are
linear coefficient. Using the inverse scattering transform, wean important issue in localization. Thus the relationship of
exhibit several typical behaviors. The mass of the transmittethe width of the soliton and the correlation length of the
soliton may tend to zero exponentiallgs a function of the potential will clearly have a fundamental effect on the ques-
size of the slapor following a power law; or else the soliton tions we are trying to answer. We shall consider the influ-
may keep its mass, while its velocity decreases at a very slownce of small random perturbations, and aim at reporting
rate. possible asymptotic behaviors when the amplitudes of the
In this paper we consider a lattice version of the NLSrandom fluctuations go to zero and the size of the system
equation, so as to take into account the discreteness for thges to infinity. We shall put several interesting features into
study of the stability of solitons. The discreteness appears isvidence as a result of the discreteness of the lattice.
various physical frameworkqoptical waveguide arrays The paper is organized as follows. Section Il is devoted to
[9,10], electric circuit 11,12, electron trapping in materials a short review of the Ablowitz-Ladik equation and the dis-
[13], etc), and may induce very different features comparedcrete inverse scattering. We introduce exact traveling solu-
to the continuum NLS equatiof14]. The so-called tions(soliton solution$of the integrable system, and we also
Ablowitz-Ladik (AL ) equation[15] is the integrable discreti- present basic results that are required for our study. In Sec.
zation of the continuum NLS equation, so it is the relevantlil we address the random problem at hand: the interaction of
equation to consider in order to point out the role of discretea soliton with a random on-site potential. By applying a
ness in the interplay between randomness and nonlinearityiodified version of the inverse scattering transform, we
study the interaction of the soliton and radiation, and we
derive an effective system that governs the evolutions of the
*FAX: (33) 1 69 33 30 11. Email address: soliton parameters. This system is carefully studied in Sec.
garnier@cmapx.polytechnique.fr IV. We compare the theoretical results with full numerical
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simulations of the AL equation in Sec. V. Finally in Sec. VI If g, decays sufficiently rapidly d®|—c (more exactly for
we consider an Ablowitz-Ladik chain with random coupling qe '), then¢,(z)z " and ,(z)z" are well defined for any
coefficients. ze S and can analytically continued f¢z|>1. Introducing
the involution operator Inv
Il. HOMOGENEOUS ABLOWITZ-LADIK CHAIN 5 (117
The integrable discretized version of the continuum NLS Inv(f)n(z)zfn(z)z( _:: (1/2*)> , (8)
in

equation is the so-called AL equati¢h9]:

iQntt Ans1tAn-1— 200+ |9n%(Ans1+9n-1)=0. (1) the vectorf .associated with a vectdrsqlution of Eq.(4) is
also a solution of Eq) for the same eigenvalue We thus
This model can be derived from the Hamiltonian consider also the eigenvectapsand which can be defined
either as the involutions of and ¢, respectively, or as the
H=—22 qunq:+l)+22 log(1+]|qn|?) 2) eigenfunctions which are associated with the eigenvalue
n n and which satisfy the following boundary conditions:

if we take care to adopt the nonstandard Poisson brackets
[20]

{Am. O3} =1(1+]0nl®) Sy {Am.On} ={a}.05}=0, Yn(2)=2", n—o. (10)
3

n

dn(2)=—67 ", n——oo, (9)

én(2)Z" and ,(2)z~" are analytic foriz] <1. Furthermore
where the star stands for the CompleX Conjugation. This inthe Jost functionsﬁ-(z) and Z(Z) are |inear|y independent
tegrable version supports moving nonlinear localized excitapecause their Wronskian

tions in the form of lattice solitons, so we can study the

effects of site-dependent on-site potentials with the known — W(y(2), ¥n(2))= th11(2) Y2n(2) — h20(2) h1.n(2)
analytic behavior of the unperturbed dynamics. We shall be-

gin by a short review of the inverse scattering transform B - o1
applied to the AL equation. = _ngn (1+aml®) (11)
A. Direct transform: The scattering problem is nonzero. Therefore, they form a base of the space of the

The scattering problem associated with the AL equation isSOIUt'cmS of Eq{4), so that we have the decompositions

the Ablowitz-Ladik spectral probleri5]

1 0
0 1 fria(2)+

bn(2)=a(2)Yn(2) +b(2) ¥(2), (12)

0 dn z 0 _ _ -
Y fn(z)=(0 Z_l)fn(a, $n(2)=—a(2)n(2) +b(2)in(2), (13

n
wherea andb are the so-called Jost coefficients. If follows
from Eqgs.(12) and(13) in particular that

 W(n(2), ¢n(2))

 W(n(2),¥n(2)
(14)

fo(2)= (4)

fl,n(z)>
fon(2) ’

whereze C is the spectral parameter. Let us first assume that a(z)
q,=0. In such conditions, there exists no solutionl fnof

Eq. (4) whateverz, which means that the discrete spectrum is

empty. The continuous spectrum consists of the unit circle ofrom this definition we can see thats well defined ovef?,

the complex plané’; the associated eigenspace is of dimen-and can be analytically continued in the outside of the unit
sion 2, and the pair of function®{z",e,z" ") is a base of the  circle. b is well defined overs', but there is no reason to

 W(n(2), 9in(2))

- — ’ b(Z)
W(hn(2),¢n(2))

eigenspace associated with the paramgterhere believe that it could be continued out of the circle, except if
(dn)n is exponentially decaying. Furthermore it can be
1 0 — .
o= . &= ) (5) ihown by symmetry arguments tha{z)=a*(1/z*) and
0 1 b(z)=b*(1/z*), ais even inz, andb is odd. Finally, letting

From now on, we assung,#0 n— —o in the Wronskian relatiorf11) yields that, for any

1.
Continuous spectrunThe so-called Jost functions and ze§
¢ are the eigenfunctions which are associated with the eigen- o
;/iglrlljs? z, and which satisfy the following boundary condi- |a(z)|2+|b(z)|2:n=ﬂw (1+1]9,]9). (15)

dn(2)=e2", n——oo, (6) Discrete spectrumNote that ifz;, |z;|>1 is a zero ofa,
then the functions)(z;) and ¢(z,) are linearly dependent,
Yo(2)=ez2" ", n—ow, (7) i.e., there existx; such thate¢,(z,) =c,¢,(z;) for any n
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eZ. Accordingly, ¢ and ¢ are exponentially decaying as
[n|—c0. Sincea is even, the zeros come i pairs. We
retain only the zeros with a non-negative real part, and num-

ber them from 1 to). The set of quantitie$a(z),b(2).z ~  are two of the infinite number of conserved quantities for the
€5%,z,¢,a'(z).j=1,... )} is the scattering data for the homogeneous Ablowitz-Ladik chain.

Ek==—2; Re(q} dy-1) (23)

spectral problenfiEq. (4)].

B. Time evolutions of the scattering data

The time equations for the scattering data are

a(t,z)=a(tg,z), zeSh (16)
b(t,z)=b(tg,2)expliw(z)(t—ty)), zeSY, (17
cj(t)=cj(to)expliw(z)(t—ty)), j=1,...J, (18

where w(z)=2—2z?—2z"2. Note thatw(z) is the linear dis-
persion relation of discrete linear ScHinger equation. In-
deed the linear form of Eq(1) is ign+dn+1+dn,— 200

=0, whose dispersion relation is obtained by lettigg
=7""exp(—iwt).

C. Inverse transform

Given the set of scattering data, we define
_ 1 b A,
F(m)=—— § =(2)2" Ydz- > ¢Z"*t, (19
4i w a =1

Where?J:l/z]—* , Ej=cJ*Ej2/a’(zj)*, andy, is the positively
oriented unit circle. Then we compute the kerkelas the
solution of the system:

K(n,n+2p—1)—2F(2n+2p—1)

©

+4 Z K(n,2n+2p”—1)
p/’p!/:]-

1)F(2n+2p’ +2p—1)=0.
(20

XF*(2n+2p’ +2p"—

The derivation of the set of conserved quantities is based
on the expansion of the analytic functiafiz) asz—0.

Lemma 1.2 The functiong(z) has an expansion as
—0,

loga(z)=>, C;z%, (24)
i=1
whereC; are time independent. In particular,

—; a1

Proof. The following arguments are taken from REZ1].
It can be shown from the scattering problem that

(25

loga(z)=2, loggn(z%), |z|<1, (26)
n
whereg,, satisfies
an+1 _ 2 %
gn+l(gn+2_1) z ( On+1— 1)__2 On+19n-
n
27

These equations are established by reladifm) to the eigen-

function ¢ by a(z)=lim,_...(— ¢2n2"). As z—0, g,(z?)
has the expansion

(2)=2, g7, (28)
j=0
We then find from Eq(27) that
On=1—2°0}_1Gn-2— 205 10n—3(1+[0n_p| )+ .
(29

This equation is the discrete analog of the Gel'fand-Levitan Thusg(z) analytic for|z|<1, has expansio(24) asz—0.
Marchenko integral equation. They are linear summatiorFurther,C; are time independent, sine¢z) is time indepen-

equations. In such conditions, it can be proy&€] that
gn,=—K(n,n+1). (21)

D. Conserved quantities

dent. Settlng Eqs(29) and (24) equal, one obtains the de-
sired result.

It will be necessary below to express the mass and energy
in terms of scattering data.

Proposition 11.3 Let us define(z) :=log[1+(|b|%/|al?)] for
ze St The total mass and the kinetic energy can be decom-

Conserved quantities can be worked out as in any inteposed into the sums of continuous parts and of discrete parts:

grable systeni21].
Proposition 1.1 The total mass

Nwt==; log(1+|d,/?) (22)

and the kinetic energy

1
totzm

1 c(2)
E,.= Re(l— % —SdZ

jg C(Z)dz+2 log|£;/?, (30)

J
+2j§l Re((j—¢). (3D
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Proof. Although the arguments are quite standard, they

cannot be found in the literature for the Ablowitz-Ladik
problem as far as | know, so | give some more detail for thi
part. Let{; (|¢j|>1) be the squares of the zeros af |

=1,...)). We also denot¢;=1/} . Then the functiom,

T
_gj’

(32

is analytic in|z|>1 and has no zero. Furthermore it con-

verges to 1 afz|—0. By Cauchy’s integral theorem we thus
have

1 logA(2z)

2im v 278

dz=

(33

for any |Z|<1. On the other hand, the functigk= Inv(A),

724

A(2)= a(z)H
g

(34

is analytic in|z|<1 and has no zero. Thus, for apgj<1,

1 [ logA(z) = —
> e dz=logA({). (35
Summing yields
1 lo (Kz A(z
I0gA()= 5 %g())dz, (36)
or, in terms ofa andg,
i
lo a(g)+2 lo
g 09—+ 2 g’,
1 log|a(z)|? J
g7 23, lodg . (@7

C2im J,, z—¢
We expand this expression with respectte-0 and collect
the terms for each power af. Applying lemma 1.2 then
establishes the equations

1 logla(z)|? 5
O‘mffu ———dz —2 loglgl?, (38
’ 1 log|a(z)|?
1
Cit 2 (-G =57, ¢ — 5 dz (39

whereC; is given by Eq.(25). From the conservation rela-
tion (15), for any ze S* we have|a|?(z) = exp(N;o;—¢(2))
so that Eqs(38) and (39) also read like Eqs30) and (31).
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E. Soliton
Equation (1) possesses soliton solutions, that is to say

Swaves that propagate at constant velocities with constant en-

velopes. These solutions are of the form

sinh w)exgik(n—x(t))+ia(t)]

Qns(t) = coslt (N —x(0)] ' (40)
where
X(t)=Xxg+ 2t szmsin(k), (41)
a(t)=ao+2t| costiu)cosk) —1+ ksin(kjsink(z) |
(42

The mass, velocity, and kinetic energy of the soliton are

ZSiﬂf(M)
m

NS: 2/*“1 US: s"‘(k)y

(43

Exs=—4 sini(u)cogk),

respectively. The width of the envelope of the soliton is con-
versely proportional to its mass. The soliton solutidy.
(40)] is associated with the following scattering data:

22—explik+pu)

Z2—explik—p)’ “9

ag(z)= bs(z)=0.

a admits a unique pair of zeros in the outside of the unit
circle that are denoted by exk{ w) and —exp(k+w). The
corresponding Jost functions are

n
$ns(2)= 2 coshu(n—1—x)
as(z)el’«(nflfx)_i_ efﬂ(nflfx)
(1_ as(z))ze—ik(n—x)—ia

), (45)

Uns(2)= 2 coshu(n—1—x)

(1_ e‘zf‘as(z))z‘ 1eik(n—x)+ia
e,u(nflfx) + as(z)ef/L(n+ 1-x)

(46)

I1l. INHOMOGENEOUS ABLOWITZ-LADIK CHAIN
A. Random on-site potential

We consider a perturbed Ablowitz-Ladik equation with a
nonzero right-hand side:

eRn(Q).
(@7

The small parameter e (0,1) characterizes the amplitude of
the perturbation. Here we assume that

iqnt+Qn+1+qn—l_2qn+|qn|2(qn+1+qn—l):
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Rn(0)=Vnan, (48) ga_ S W(¥n+ 1(2),F(dn) ¢n(2)) 53
which means that Eq47) can be derived from the Hamil- Jt T W(ni1(2),¥011(2)
tonian B
db . . W(l//n+1(z)aF(Qn)¢n(Z))
N b+ — , (54
H=—2§n: Re(an:H)Jr; (2+&Vp)log(1+|g,/?). e |g; W(n+1(2),¢n+1(2) 59

(49) 0 Ry(a)

where F(q,) = (R*(q) 0

they satisfy the condition R,(q)dy is real valued”(which  erated by the moving soliton. After some algebra this system
implies that the system is conservajivéVe shall study an- simplifies into
other random problem in Sec. VI. In the framework of Eq.

). These equations will be needed

(48), the total mas$,,; and the total energy defined by da .
51~ le(@ntbyy), (55
Eor=Eict B, Ec=e2, Vplog(1+]ai®) (50 b
Eziw(z)b+i8(—ay§+b71), (56)
are conserved. Note thHE,,— E,| is uniformly bounded by
&Ngotl| V|| . The site-dependent potentidlis assumed to be \yhere
a bounded, zero-mean, stationary, and ergodic sequence of
random variables. Its autocorrelation function is denoted by Pins 105 RE(Q) + o 1805 Ra(Q)
n=2 ———————————, (67
I'(n):=E[VoVp]=E[Vn Vi inl, (51 n nt1

whereR stands for the statistical average with respect to the RA (@) 1nthinr1— Ra(A) ¥onthonsa
stationary distribution o¥/. We assume that the potential has v2(t) = zn: W, .1

enough decorrelation properties so that the series

=% _|T(n)|Y2is well defined and finite. We can then in- o

troduce the Fourier transform of the autocorrelation function W, 1(t)=|¢1n: 1|+ |¢oni1/?= II (1+]q/® %
of the potentiaV m=n+1

. (58

(59
d(w):= > T(n)exgine), (520  The time independence ¢&|+|b|? for any ze S* is con-
n=—c served by these equations, which holds true as soon as the
_ . _ L ) total mass is preserved.
which is non-negative real valued since it is proportional to
the power spectral density by the Wiener-Khintchine theo- C. Adiabati imati
rem[22]. For instance, if the random variables are indepen- - Adiabatic approximation
dent and identically distribute(tiscrete white noige then The adiabatic approximation consists of assunairpgiori
the spectrum of the potential is flat and givendiw)=0?  that, while the soliton exists, its evolution and the one of the
= V2] for any . radiated wave do not interact. More precisely, we assume

We shall use the inverse scattering transform to study outhat the time evolutions of the Jost coefficieatandb given
problem. Indeed the random perturbation induces variationBy Ed. (53) depend only on the components of the functions
of the spectral data. Calculating these changes we are able ta andy, which are associated with the soliton. We can then
find the effective evolution of the field and calculate thecarry out calculations under this approximation, since it re-
characteristic parameters of the wave. We shall be interestediices the analysis which provide an expression of the solu-
in the effective dynamics of the soliton propagating overtion g,. A posteriori we check for consistency that this ap-
long timesT/e2. The total mass and energy are conservedproximation is actually justified in the asymptotic framework
but the discrete and continuous components evolve during—0. More exactly we show that the components of the
the propagation. The evolution of the continuous componenfunctions y; and y, which correspond to the interplay be-
corresponding to the radiation will be found from the evolu-tween the computed radiation and the soliton, or else which
tion equations of the Jost coefficients. The evolutions of thedriginate from the sole effect of the radiation, can be consid-
soliton parameters will then be derived from the conservaered as negligible terms for the soliton evolution.
tion of the total mass and energy.

D. Asymptotic regime

B. Evolution of the scattering data Let T>0. Let us denote by): the set of realizations of

We now describe the evolutions of the Jost coefficients the potential ¥/,,),, such that the wave after propagation over
and b during the propagation. They satisfy the exact equaf0,T/£?] consists of one soliton plus some radiation. We
tions[23] denote byu® andk® the rescaled processes defined by
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wf(t)=pu(t/e?) and k®(t)=k(t/e?) (i.e. the parameters of
the transmitted soliton at timgs2), and on the complemen-
tary setQ3° by u?(t)=0 andk®(t)=0. We can now state
our main convergence result, whose proof is given in Appenf

dix A.

Proposition IIl.1 Under the adiabatic approximation, the

following assertions hold true for ary>0:
(1) liminf,_ o P(Q%)=1.

(2) The R?-valued procesgu®(t),k*(t))ic[o1) cONverges
in probability to the R?valued deterministic function
(1(t) ki (1)) corp Which satisfies the system of ordinary

differential equations

du

F:F(Mlikl)i ,U«|(O):,u,o,
dk (60)
d—tIZG(thO, ki(0)=ko.

The functionsF and G are equal to

1 (2=
H”M:_EL Clu.k, 6)do, 61)
1 27
G(M,k)z—mﬁ) (cost{u)cogk)
—c0g26))C( .k, 6)d6, 62)

where the functionC is the mass density scattered by the
soliton with parametersy, k) per unit time. The parametér
is related to the spectral parametethroughz=e€'’. The

exact expression o€ is the following:

PHYSICAL REVIEW E 63 026608

IV. EFFECTIVE EVOLUTION OF THE SOLITON
PARAMETERS

This section is devoted to the study of the evolutions of
he parameters of the transmitted soliton. By proposition
IIl.1 these evolutions are given by E@0). We aim at ex-
hibiting the relevant characteristics of this deterministic sys-
tem of ordinary differential equations.

A. Linear regime in the approximation py<<1

System(60) can then be simplified to a good approxima-
tion:

du  d(2K)

a=—mu,

dk  d(2k) B (65
dt 6 tank)’

with the initial conditions imposed by the incoming soliton:
wn(0)= o andk(0)=Kk,. It thus appears that the velocity

of the soliton[equal to 2 sirf)sinh(u)/u=2 sink)] is almost
constant during the propagation, while the miisequal to
2u) decreases exponentially:

t), _ 25sin(ko) -

,M(t)E/—LoeXF(—T—1 Tl_d(z—ko)-

Accordingly the localization length that is defined for a soli-
ton with velocityU asL;=UT;, is equal to

4 sin(kg)?

The spectrum of the radiation is concentrated around the
spectral parametefi= —ky/2 (and —ky/2+ 7). This means

a sinhu o : . .
C(u,k,0)= ~ that the radiation oscillates as exjikyn). More precisely,
164 cos)’( ‘;:) sin(k) the mass density of scattered wave is
in(w,/2)*d k wd(2k
w— Siwz/2)7d(wp) . (63 C( o= — ?0+“X = ( 20)_ . (69
(cosh ) —cog260—k))? 2 costimx)?sin(koy)
. ) It can be noted that, in the limit cagg— 0, the incoming
where the functions, andw; are defined by soliton can be approximated by a linear wave packet:
K 6)= cosh w)cogk) —cog20) .
wl(ﬂv ’ )_/J“ Sln"(,U,)Slr(k) ’ qn(t)zj dK(’\ﬁo(K)eiKn_M SiI’]Z(K/Z)t
wo( K, 0)=wi(u,k,0)+k—286. (64)  with

The first assertion of the proposition means that the event [ k—Kg

“the transmitted wave consists of one soliton plus some ra- Z( o ) . (69)
diation” occurs with very high probability for smadl, while

the second assertion gives the effective evolution equation of .

the parameters of the transmitted soliton in the asymptotidlote that the dispersion relation for the linear discrete Schro
frameworke —0. dinger equation reads(«)=4 sirf(x/2). The spectrump,

A 1
bo(K)= 7 cosh !
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of the soliton is sharply peaked abdy, so that the local- 15

ization length also reads &s = w(2Kkg)/d(2ky). [T
If ko<1, then we regain the well-known continuum limit. i

The continuum dispersion relation reads«)= 2. The I

spectrum of the soliton has a carrier wave numkgerFur-
thermore the spectrum of the scattered wave packet is peaked
about the spectral parameterky/2, which corresponds to
the wave number-k,. These statements are in agreement
with the linear approximation. The localization length

= w(2Kkgy)/d(2kg) corresponds to the localization length of a
monochromatic wave with wave numblkg scattered by a

. . _. PR SRS N TR SR SR T NN YO ST SR SN NN S SR S S AP U S R
slab of linear r_andom medium. We have thus recovered the 00 1000 2000 3000 2000 5000
results stated ir{Ref. [24] theorem 4.1, where the authors ¢
showed that, in such a situation, fer small enough, the (a)

transmission coefficient® satisfies, with probability 1:

10=0.6 , ko=7/4

15} 4

1 g?
lim — log|T?|?(L)=— —+0(e&3). (70
L Ly

L—o

B. Nonlinear regime in the approximation py=>1

System(60) can then be simplified:

d - e # - |
FEEITS IPATITEr INSST AT ANATArArE N ArArS ATSTATAS IFTArArE A A AT IS A
d_,u = _ tantk) 00 1000 2000 3000 4000 5000
it e ™ ik t
1 COS 2 tank) sin(k) (b)
(71 FIG. 1. Mass and velocity of the soliton during the propagation.
The lines correspond to the theoretical values computed from sys-
3dl M| p2e tem (60). We assume that®= 1510 2. The initial values of the
ﬂ( _ tan(k) soliton parameters arg,=0.3 andky= /4 (a) and uy=0.6 and
dt T 2 ' ko= 7/4 (b). The velocity is almost constant, while the mass decays
64u cos 2tank) sin(k)tan(k) exponentially.
. I - My, T
with the initial conditionsu(0)= o and k(0)=k,. The d Sd(?) iy ex;{ — U= F)
mass density of the scattered wave is M
dt 16uk '
M (74)
—— | e H M T
tan(k) . 3d(—) w2 ex;{ —u— —)
C(o)= n 2 Sm4<tar/:k) +k—20). dk 1k 7k
I Y dt 2 '
8u cos}‘( 5 tar(k)) sin(k) 16uk

72
(72 Since u converges towim = mo+ log(cosky)), this means

_ _ o that the decay ok is governed by
The soliton emits radiation whose spectrum covers all fre-

quencies with a sthform centered ap/tan(k) +k modulo Liim -

2. It can be readily checked that ex)€osk) is constant dk 32 expl — i) d(T) ;{— F)

during the propagation, which means that the mass of the T Him . (79
soliton converges to the limit valug,;, , dt 16L1im k?

_ _ The limit behavior for large of the parametek depends on

Niim=241im =240+ 2 log(cog ko)), 3 the high frequency behavior of the Fourier transform of the
autocorrelation function of the potentisll The exact decay

while the velocity of the soliton decreases to 0. WHen rate of the velocity results from the competition between the
becomes small, systef@l) reads, in simplified form, termsd(uim /K) and expt#/k) in Eq. (75). If the spectrum
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wo=3, ko=7/4

no=1.2, ko=m/4
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(b) (b)

FIG. 2. Mass and velocity of the soliton during the propagation. FIG. 3. Mass and velocity of the soliton during the propagation.
The lines correspond to the theoretical values computed from sysFhe lines correspond to the theoretical values computed from sys-
tem (60). We assume that®= 1510 2. The initial values of the tem (60). We assume thair?= {510 2. The initial values of the
soliton parameters argq=1.2 andko=7/4 (a) and uo=1.5 and  soliton parameters arg,=3 andko=/4 (a) and uo=6 andk,
ko= /4 (b). In both pictures, the mass and velocity begin by de-=7/4 (b). The mass goes to the valud,+ 2logcosky)]=Ny
caying almost linearly. After this transition regime, the pictures —0.69, and the velocity decays at a logarithmic rate.
become very different, although the initial values of the parameters
are very close. In picturéa), the velocity tends to a constant posi-

. . . iml
tive value, and the mass decays exponentially to zero. In pi¢hire K(t)= Hiim’e (77)
the mass tends to a constant positive value, and the velocity decays vlogt

to zero at logarithmic rate.

The decay rate (log~*?is imposed by the shape of the tail

of the potentiald(w) decays slower than expre/wny), of the spectrum of the random potenthal If t.he spectrum
then the exponential term is the smallest one, and consé&l®cays faster than a Gaussian, then the regime corresponding
quently imposes the decay rate kof to Eq. (77) will be still slower. Conyersely, if the spectrum

decays slower than any exponential, then one can only ob-
serve regimeg76).

k()= (76)
logt C. Numerical resolution of the effective system

In the above paragraphs we have reported two domains
This logarithmic rate actually represents the maximal decayvhich are stable with respect to the evolutions of the param-
of the velocity. Whatever the potenti&, the terms of the eters of the transmitted soliton. We aim at showing here that
right-hand sides of Eq.75) have at least an exponential de- these regimes are not only stable, but attractive. In order
cay of the type expta/k), which implies liminf_ ., k(t) to prove this statement, we are going to solve numerically
Xlog(t)=m. However, the decay rate may be much slower.system (60) for different incoming solitons, without any
For instance, assume that the spectrunVdhas Gaussian assumption about the values of the initial parametegs
shape so thad(w)=02exp(flgw2). Then the velocity de- and ky. For simplicity, in this section we assume that the
creases as the square root of the logarithnx of spectrum of the random potential is fldfw)= o2, which
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means that the potentiaV(),.; is a sequence of indepen- w(p) 1 21
dent r;md identically distributed random variables and C°<2T+§ arctar(—)
=E[V7]. (k)= -

Figures 1-3 plot the evolutions of the parameters of the (1+4pPa )t
transmitted soliton as functions of the duratioifhe param- wip) 1 w
eterky is chosen at some fixed value for all figures, equal to ok + > arctar(;

/4, but the initial mas®ly=2u varies from 0.6 to 12. The +4 +3
striking point is that two different behaviors can be put into (1+ p2m 214 ’
evidence, and that they are separated from each other by a )

critical value 2u, of the initial mass 2. W(u)=p(costu)—1)/sinh(p).

Whenuo< u. [Figs. 1 and 2a)], after a transition regime
where the mass and the velocity decrease as powers, tide first two terms oh(u,k) are responsible for the oscil-
velocity reaches a stable valug,,, . This limit value is very lations. Indeed they are of the form ca#) with (almos}
close to the initial valudJ, when ug<p.. Once the veloc- constantw, so they oscillate ak—0.
ity is stable, the mass decreases exponentially with the local-
ization lengthU,;,/o?; this regime was described in Sec. V. NUMERICAL SIMULATIONS
IV A.

Whenuo> u. [Figs. 2b) and 3, after a transition regime i
where both the mass and the velocity decrease, the mag;

reaches a stable valudlm which is equal to N, infinity. In this section we aim to show that the asymptotic
—2 log(cosky)) if wo>pc. Once the mass is stable, the ve- yapaviors of the soliton can be observed in numerical simu-
locity decreases as/logt, as described in Sec. IV B. lations in the case where is small, more precisely smaller

One can also note that the critical poiat is unstable.  than any other characteristic scale of the problem. We use a
We practically always observe one of the limit behaviorsfourth-order Runge-Kunta method to simulate the perturbed
described in Secs. IV A and IV B. nonlinear Schidinger equation(47). This numerical algo-

We would also like to comment upon the oscillations of rithm provides accurate and stable solutions to a large class
the velocity that can be observed in the left picture of Fig. 3.of systems of ordinary and partial differential equatioRsf.
These oscillations are due to the discreteness, and thgg5], p. 349. We checked the accuracy of the method by
appear in the regime whem> w., but u is not very large, evaluating the quantitie§, andN in the absence of a ran-
so that system(71) is not strictly fulfilled. One must then dom potential £=0). They were conserved to a relative
reconsider the original systen§60), and consider the error less than 10,

The results in the previous sections are theoretically valid
the limit casee —0, where the amplitudes of the pertur-
tions go to zero and the size of the random system goes to

asymptotick—0 and consider that. is of order 1. After Let At be the elementary time step. We denote the initial
some algebra one establishes that systéf can then be wave solution by qg)nzo,...Mfl- By induction we
simplified into compute o' *t=[qn((j+1)At)]1—o,. . m-1 from ¢’

=0n(JA)n=0,.. . m-1- Sin(Z:e the time domain is planned to

. be very long, of orders~, the solution will propagate

du _ ar sinh( ) (W(M))exp( B WW(M))h( K over di)s/tancgs of order 2, so that we would haF\)veptogtake
dt 64w ( u)k2 k ku i a computational domain of sizél~& 2. In order to
deal with a tractable problem, we use a shifting computa-

(78 tional domain which is always centered at the center of
mass of the solution. Moreover, we impose boundaries of

)h(,u K) this domain which absorb outgoing waves. This can be

ku Y readily achieved by adding a complex potential which is
smooth so as to reduce reflections. We choose to substitute

the complex potentiaV/ =V — iV aps for the random potential
where V,

dk  sinh(w) (w(@) p( TW( )
Pk ™ d L |exn -

o[ ™ Mg—n .
VabsmaxSlnz 2 M, ifosn<M,
[T Mg+tn+1-M )
Vabsmaxsm2 EM— fM—1-My<nsM-1,
0
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(b) t FIG. 5. Intensity profiles of the solutions at different times. The

coordinaten is shifted around the center of mass. The initial wave is

FIG. 4. Mass and velocity of the soliton during the propagation.@ soliton with parameterg,=1 andk,=w/4. The same data are
The thick lines correspond to the theoretical values computed fronplotted on a linear scale in pictute), and on a logarithmic scale in
system(60). The thin lines correspond to a numerical simulation of picture (b). The cutoff that can be observed in pictul® at the
the Ablowitz-Ladik equation, with a random potential with an am- boundaries of the domain originates from the absorbing potential
plitude equal ta: =0.1. In picture(a) the initial values of the soliton ~ Vaps-
parameters argo=1 andky,= 7/4, which correspond to the linear
regime where the mass decays exponentially to zero and the veloc- M-2
ity tends to a constant positive value. In pictdipgthe initial values Ex(jAt)=—-2 R{ > ani Al (jAY . (80
of the soliton parameters agg,=2 andk,= 7/4, which correspond n=0
to the nonlinear regime where the mass tends to a constant positive
value while the velocity logarithmically decays to zero. We finally deal with the set of datd,(jAt)); in order to

) . . compute the velocity of the soliton, which can be computed
whereM —1 (0) is the left(right) end of the computational py Eq. (43):

domain, and0,My] ([M—1—Mgy,M —1]) is the left(right)
absorbing slab. - ) >

We asgsume in this section that the random poteitigls Ui At = \/16 sinf(N(jAD/2)—E(jAD) 81
a sequence of independent and identically distributed vari- (JAD= N(jAt) ’ (81)

J

ables, which obey uniform distributions over the interval
[-1/2,1/2, so thatd(w)=0?=1/12, We takee=0.1. In  We perform different simulations where the initial wave at
such conditionsr®s?= 1510 2. The timeT will be chosen so  timet=0 is a pure soliton with parametera,k,) centered
large (of order~?) that we can observe the effect of the at x;=M/2. In the first one we simulate the homogeneous
small perturbatioreV,,. We measure the mass and the ki- nonlinear Schirdinger equatioril), which admits as an exact
netic energy, of the solution during the propagation, as welkolution (40). We can therefore check the accuracy of the
as the envelope of the transmitted solution, that we can comumerical method, since we can see that the computed solu-
pare with the envelope of the incident soliton. The massion maintains a very close resemblance to the initial soliton
N(jAt) and the energf,(jAt) are computed at tim@At  (data not showpn while the mass and velocity are almost

from the data §,(jAt))n—o,... m—1 8S constant. The other simulations are carried out with various
M-—1 values of the initial parametersuf,ky) and different real-
N(iAt) =2 loa(1+ iAt)]2), ization_s of the rando_m potential with=0.1. The simqlateq

(a0 nzo 9+ lan(jADID evolutions of the soliton parameters are presented in Fig. 4,
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and compared with the theoretical evolutions given by Ed.iq,+ (qn41(1+eA,)+qn_1(1+eA_1))(1+]an? — 20,
(60) on the scalé/e?.
It thus appears that the numerical simulations are in very ~ =0. (85)

good agreement with the theoretical results. The simulated . _
masses follow very closely the theoretical ones. This ign Such conditions the total mass and the energy defined as

partly due to the fact that the perturbed equation preservesd: (84) are preserved. We can then perform the very same
the total mass, study as in the case of a random on-site potential, and come

to the same conclusion as the one stated in proposition Il1.1.
1 (27 The only difference comes from the fact that the expression
Niot=2u+ ZJ c(e'’)de, (82)  of the scattered mass density is not E63), but a more
0 intricate expression. Nevertheless we can study this expres-
wherec(-) is the density of the scattered mass. This impliesSlon in some relevant configurations. . .
stability for the parameter and the mass of the soliton. It WPT h"?‘V_e_ found that the mass density scattered by a soli-
Eon with initial parameter&, and uy<<1 has the same shape

also appears that the velocity follows theoretical curves, buas one corresponding to the random potential confiauration
also presents quickly varying fluctuations around the theoret- P 9 P 9

ical values. This is in fact not surprising. Indeed the per-(up to a factor 4). The spectrum of the radiation is concen-

turbed equation preserves the total energy, which can be e)t{_ated around the spectral paramefier —ko/2:

df Eg<31) and (50
pressed from Eqg31) and(50) as 2md(2kg)

" costimx)Zsin(ky)

Ko
Cl o= 3 +ux (86)

Eror= — 4 sinf(w)cos k) + f 2 (€% cog26)d0
mJo

Accordingly the localization length for a low-amplitude soli-
ton with velocity U =2 sinf) is equal to

sin(ko)?

The last term is negligible in the asymptotic framewaerk 27 d(2ke)
—0, but whene =0.1 it gives rise to local fluctuations of the
parametek and of the instantaneous velocity of the soliton. If the random coupling coefficientd , are of the form 1

Figure 5 plots the envelopes of the solution at differentt e A,=\p.1— Ny, With independent random variables,
times corresponding to one of the simulations, which showavith variances2o?, thend(2ko) =4 sinf)?0?. This implies
that the wave keeps the basic form of a soliton although ithat the localization length is independent of the soliton pa-
loses some mass. All these results confirm that sy$6in rametersi,= o ?/4.
describes with accuracy the transmission of a soliton in a On the other hand, we have found that in the strong non-
nonlinear Ablowitz-Ladik chain with small random perturba- linear regimeuy>1 the mass of the soliton converges to the

+e>, Vylog(1+]q,/?). (83)

(87)

tions. valueNg+ 2 log(cosf)) while the velocity slowly decays to
zero. This regime is very similar to the one discussed in Sec.
VI. A SECOND RANDOM PROBLEM IV B for the random on-site potential.
We would like to briefly present a second model that de- VII. CONCLUSIONS

scribes a random Ablowitz-Ladik chain that could be of in-

terest for applications to discrete spatial solitons in wave- We have applied two types of random perturbations to the
guide arrays, for example. We have considered a randonmtegrable lattice nonlinear Schidimger equation. We have
on-site potential in the above sections, that corresponds tstudied the propagation of a soliton with mags=2u, and
Hamiltonian systent49). However, it often happens that the velocity Uq=2 sinh(ug)ug ! sinko) in these random nonlin-
randomness originates from the coupling coefficients, so thasar chains. We have found that there exists a critical value of

the underlying Hamiltonian is the initial mass of the soliton below which we observe an
exponential decay of the mass, and above which an original

__ * 2 nonlinear regime prevails which involves the convergence of
H 2; (1+8A”)Re(q”q““)+2§ log(1+ 1@l the mass of the soliton to a calculable positive value and the

(84)  slow decay of the velocity.

More exactly, in case of a small initial mabl, we have
where A,, are real-valued random variables. In the planarproved that the velocity of the soliton is almost constant,
waveguide framework10], the tunnel coupling coefficient while the mass of the soliton decays exponentially with the
1+eA, is proportional to the gap between the guidesnd  size of the system. We have computed the localization length
n+1. Note that we have normalized the average couplindor both types of perturbations. In the case of a large initial
coefficient to 1, and thatA , stands for the zero-mean fluc- massN,, we have shown that the mass of the soliton con-
tuations. If we denote the transverse coordinate ofrttie  verges to the valudly+ 2 log(coskg)). Furthermore the ve-
guide by\,, we have HeA,,=\,.1—\,. The system that locity is found to decrease at logarithmic or sublogarithmic
governs the evolution af, is rates to O.
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ACKNOWLEDGMENT on the analytical properties @ in the outside of the unit
circle, and it is very similar to the corresponding part in Ref.
[8]. Basically we apply Rouchetheorem so as to prove that
the number of zeros is constant. This method is efficient to
prove that the zero is preserved, but it does not bring control
APPENDIX: DERIVATION OF THE EFFECTIVE on its precise location in the outside circle. This step is not
SYSTEM sufficient to compute the variations of the soliton parameters.
(2) Compute the amount of radiation, and then the varia-
In this section we outline the main steps of the proof oftions of the soliton parametertinder the adiabatic approxi-
proposition I11.1, which closely follows the strategy devel- mation, we solve the evolution equatiof83) so that we
oped in Ref[8], and we shall underline the key points. obtain a closed-form expression of the ralita. More ex-
(1) Prove the stability of the zero of the Jost coefficient a actly, the scattering data/a(t,z)=b/a(t,z)e '“t at time
The zero corresponds to the soliton. This part strongly relies, /&2 is given by

The author is grateful to F. Kh. Abdullaev for useful and
stimulating discussions.

~b to t0/£2 .
| = — —iw(2)t
a<82,z)— IsfiOO vze~ '@t (A1)
ya(t,2)= 2, V22" te kXM -las®) ginh 1) v (n—x4(1),2) (A2)
n
(1—e ?*ay(z))’z 2e*tH—e?M—a2(z)e 2*0F D —a(z)(1+e ?¥)
Ya(y,2)= : (A3)
4 cosliu(y—1)]cosiuy)cosh u(y+1)]
Zz_eik-%—,u
as(2)=- e (A4)

wherexg(t) and a¢(t) are the position of the center of the can efficiently compute the long-time behaviors of the soli-
soliton and the phase of the soliton at titndefined by Eq. ton parameters in the asymptotic framewerk 0, when the
(A8). From Eq.(Al) we can estimate the amount of radiation last term in the expression of the total energy is uniformly
which is emitted during some time interval in terms of massnegligible. Using probabilistic limit theorems, we then find
and energy thanks to Eg®R0) and(31). We are then able to that the soliton parameters converge in probability to nonran-
deduce the evolution equations of the soliton parameters bgom functions which satisfy syste(60).
using the conservations of the total mass and energy. For (3) Compute the form of the scattered wagven the
times of orderO(1), sinceN,,; andE,,; are conserved, the scattering data, we can reconstruct the wave by the inverse
variationsA(- - -) of the relevant quantities are linked to- scattering technique presented in Sec. Il C. Under the adia-
gether by the relations batic approximation, neglecting terms of higher order, the
total wave is given by the sumq(t/e?)=qg(t/e?)
+q.(t/e?), whereqs is a soliton of mass 2(t/¢?) and

0= 28+ % f Ac(e?)do, (A5)  velocity 2 sinhfg)sin(k(t/s2))/ u:
_ _ E 2m io t ) sinh(u)exdik(n—xg)+ias]
0 4A(sinh(u)cogk))+ wfo Ac(e'”)cog26)da dsn —2 cosh a(n—x0] (A7)

+eA(Ey). (AB)
Xs and ag are, respectively, the position and the phase of the

6y i 2 ; ;
Ac(€'’) is of ordere<, but the last term in the expression of soliton at timet/&>2

the total energy is of ordes. Thus our strategy is not effi-
cient for estimating the variations of the soliton parameters
for times of orderO(1). Let us nowconsider times of order

O(e?). Ac(e'?) is now of order 1, while the last term in i 0
the expression of the total energy is bounded above by n smr( )| C(t/s?)] |, as=arge (t/s?)+kxs,
2eN||V|l.., which is uniformly negligible ag —0. Thus we (A8)
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andq, admits the expression

t\ -1 (b
Ai.n 2| 2ixm s 2

Zze_ik+,lL

(Z) ZZn

x| 1-

Xp.(xs_ n))

1—Z%e ik—n

x| 1-

1
o

sinkP(w) exp(ik(n—Xxg) + 2i ag)
+—
20

cost(u(n—xs))

b Z—2neik—,u,
8 ﬁug(z)(zz—e”“”)zdz’

where y,(y) =e"*sinh(u)(1+tanh(uy)). gs is the soliton
part of the total wave. The first componentaf represents

(A9)

PHYSICAL REVIEW B3 026608

while behind the solitom<xg the radiation is

aE

The second component @f represents the interaction be-
tween the soliton and the scattered wave packet, which is
only noticeable in the neighborhood of the soliton. This re-
sult is not surprising. Roughly speaking, the support of the
scattered wave packet lies in an interval with length of order
e~ 2. Since thd? norm is bounded by the conservation of the
total mass, we can expect that the amplitude of the radiation
is of ordere. More exactly, using the same arguments as in
lemma 4.2 8], it can be rigorously proved that the amplitude
of the radiated wave packet can be bounded above by
Kellogg].

(4) Check a posteriori the adiabatic approximatiohhe
final part of the proof consists of checkirggposteriorithe
adiabatic hypothesis, that is to say proving that the radiated
wave packet determined here has no noticeable influence on
the evolutions[Egs. (53)] of the Jost coefficienta and b.

— *
—e 2u

2im

2n(1_22e7ik+;¢)2

(1_ZZe—ik—M)2 Z
(A11)

dun= (2)z

the scattered wave packet, with a correction in the neighborone must estimate the components of the functippsnd

hood of the solitom~Xs. In front of the solitonn>xg, the
radiation is

-1

AQun= 57~ (A10)

a

9) (2)2°"dz,

Yu

v, given by Egs.(57) and (58) which have been neglected
until now, and which are related to the interplay between the
soliton and the radiation, on the one hand, and which are due
to the sole effect of the radiation on the other hand. These are
technical calculations which are based upon the mixing prop-
erties of procesy.
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