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Propagation of solitons in a randomly perturbed Ablowitz-Ladik chain
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This paper deals with the transmission of a soliton in a discrete, nonlinear, and random medium. A random
lattice nonlinear Schro¨dinger equation is considered, where the randomness holds in the on-site potential or in
the coupling coefficients. We study the interplay of nonlinearity, randomness, and discreteness. We derive
effective evolution equations for the soliton parameters by applying a perturbation theory of the inverse
scattering transform and limit theorems of stochastic calculus.
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I. INTRODUCTION

This paper is concerned with the competition betwe
randomness and nonlinearity for wave propagation phen
ena in the one-dimensional case. As is well known, in o
dimensional linear media with random inhomogeneit
strong localization occurs, which means in particular that
transmitted intensity decays exponentially as a function
the size of the medium@1–3#. On the other hand, in homo
geneous nonlinear media, wave packets called solitons
be generated. They propagate without change of form
with constant velocities over very large distances@4#. A great
deal of work has been devoted to the transmission of a s
ton through a slab of nonlinear and random medium, es
cially in the case of the one-dimensional nonlinear Sch¨-
dinger ~NLS! equation with cubic nonlinearity@5#. Kivshar
et al. @6# obtained results in the case of a random medi
consisting of pure point impurities with a very low densi
which affect only the potential. In such conditions the a
thors showed that there is a threshold below which the pu
decay quickly. This fact was experimentally observed in R
@7#. In Ref. @8# we considered the NLS equation, and a
sumed that inhomogeneities affect the potential and the n
linear coefficient. Using the inverse scattering transform,
exhibit several typical behaviors. The mass of the transmi
soliton may tend to zero exponentially~as a function of the
size of the slab! or following a power law; or else the solito
may keep its mass, while its velocity decreases at a very s
rate.

In this paper we consider a lattice version of the N
equation, so as to take into account the discreteness fo
study of the stability of solitons. The discreteness appear
various physical frameworks~optical waveguide arrays
@9,10#, electric circuits@11,12#, electron trapping in material
@13#, etc.!, and may induce very different features compar
to the continuum NLS equation@14#. The so-called
Ablowitz-Ladik ~AL ! equation@15# is the integrable discreti
zation of the continuum NLS equation, so it is the releva
equation to consider in order to point out the role of discre
ness in the interplay between randomness and nonline
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for soliton propagation phenomena. One can find in the
erature a few papers that deal with this problem@16–18#. All
of them apply the collective variable approximation or t
averaged Lagrangian approach, where the solution is so
in a solitonlike form with time-dependent parameters. Th
this ansatz is substituted into the Lagrangian of the syst
so that a finite-dimensional system of ordinary different
equations is obtained for the set of soliton parameters.
most significant drawback of this method is that it negle
radiation effects. The main result is obtained by Scharf a
Bishop @16#: they considered a smooth potential on the o
hand and an impurity potential on the other hand. Th
showed that the collective variable approach is effici
when dealing with a slowly varying potential in the sen
that it is almost constant at the scale of the soliton width. W
shall consider more general types of perturbations, and
ceed under a different asymptotic framework. Our main c
tribution is that we use the inverse scattering transform, s
to take into account both the variations of the soliton para
eters and the radiation effects. Both effects and their in
play are important, and cannot be neglected when the co
lation length of the potential is of the same order as
soliton width. The interaction of different length scales a
an important issue in localization. Thus the relationship
the width of the soliton and the correlation length of t
potential will clearly have a fundamental effect on the qu
tions we are trying to answer. We shall consider the infl
ence of small random perturbations, and aim at report
possible asymptotic behaviors when the amplitudes of
random fluctuations go to zero and the size of the sys
goes to infinity. We shall put several interesting features i
evidence as a result of the discreteness of the lattice.

The paper is organized as follows. Section II is devoted
a short review of the Ablowitz-Ladik equation and the d
crete inverse scattering. We introduce exact traveling so
tions~soliton solutions! of the integrable system, and we als
present basic results that are required for our study. In S
III we address the random problem at hand: the interaction
a soliton with a random on-site potential. By applying
modified version of the inverse scattering transform,
study the interaction of the soliton and radiation, and
derive an effective system that governs the evolutions of
soliton parameters. This system is carefully studied in S
IV. We compare the theoretical results with full numeric
©2001 The American Physical Society08-1
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J. GARNIER PHYSICAL REVIEW E 63 026608
simulations of the AL equation in Sec. V. Finally in Sec. V
we consider an Ablowitz-Ladik chain with random couplin
coefficients.

II. HOMOGENEOUS ABLOWITZ-LADIK CHAIN

The integrable discretized version of the continuum N
equation is the so-called AL equation@19#:

iqnt1qn111qn2122qn1uqnu2~qn111qn21!50. ~1!

This model can be derived from the Hamiltonian

H522(
n

Re~qnqn11* !12(
n

log~11uqnu2! ~2!

if we take care to adopt the nonstandard Poisson brac
@20#

$qm ,qn* %5 i ~11uqnu2!dmn , $qm ,qn%5$qm* ,qn* %50,
~3!

where the star stands for the complex conjugation. This
tegrable version supports moving nonlinear localized exc
tions in the form of lattice solitons, so we can study t
effects of site-dependent on-site potentials with the kno
analytic behavior of the unperturbed dynamics. We shall
gin by a short review of the inverse scattering transfo
applied to the AL equation.

A. Direct transform: The scattering problem

The scattering problem associated with the AL equatio
the Ablowitz-Ladik spectral problem@15#

S 1 0

0 1D f n11~z!1S 0 qn

2qn* 0 D f n~z!5S z 0

0 z21D f n~z!,

f n~z!5S f 1,n~z!

f 2,n~z!
D , ~4!

wherezPC is the spectral parameter. Let us first assume
qn[0. In such conditions, there exists no solution inl 2 of
Eq. ~4! whateverz, which means that the discrete spectrum
empty. The continuous spectrum consists of the unit circle
the complex planeS1; the associated eigenspace is of dime
sion 2, and the pair of functions (e1zn,e2z2n) is a base of the
eigenspace associated with the parameterz, where

e15S 1

0D , e25S 0

1D . ~5!

From now on, we assumeqn[” 0.
Continuous spectrum.The so-called Jost functionsf and

c are the eigenfunctions which are associated with the eig
value z, and which satisfy the following boundary cond
tions:

fn~z!.e1zn, n→2`, ~6!

cn~z!.e2z2n, n→`. ~7!
02660
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If qn decays sufficiently rapidly asunu→` ~more exactly for
qP l 1), thenfn(z)z2n andcn(z)zn are well defined for any
zPS1 and can analytically continued foruzu.1. Introducing
the involution operator Inv

Inv~ f !n~z![ f̄ n~z!5S f 2,n* ~1/z* !

2 f 1,n* ~1/z* !
D , ~8!

the vectorf̄ associated with a vectorf solution of Eq.~4! is
also a solution of Eq.~4! for the same eigenvaluez. We thus
consider also the eigenvectorsf̄ andc̄ which can be defined
either as the involutions off andc, respectively, or as the
eigenfunctions which are associated with the eigenvaluz
and which satisfy the following boundary conditions:

f̄n~z!.2e2z2n, n→2`, ~9!

c̄n~z!.e1zn, n→`. ~10!

f̄n(z)zn and c̄n(z)z2n are analytic foruzu,1. Furthermore
the Jost functionsc(z) and c̄(z) are linearly independen
because their Wronskian

W„cn~z!,c̄n~z!…[c1,n~z!c̄2,n~z!2c2,n~z!c̄1,n~z!

52 )
m5n

`

~11uqmu2!21 ~11!

is nonzero. Therefore, they form a base of the space of
solutions of Eq.~4!, so that we have the decompositions

fn~z!5a~z!c̄n~z!1b~z!c~z!, ~12!

f̄n~z!52ā~z!cn~z!1b̄~z!c̄n~z!, ~13!

wherea andb are the so-called Jost coefficients. If follow
from Eqs.~12! and ~13! in particular that

a~z!5
W„fn~z!,cn~z!…

W„c̄n~z!,cn~z!…
, b~z!5

W„fn~z!,c̄n~z!…

W„c̄n~z!,cn~z!…
.

~14!

From this definition we can see thata is well defined overS1,
and can be analytically continued in the outside of the u
circle. b is well defined overS1, but there is no reason to
believe that it could be continued out of the circle, excep
(qn)n is exponentially decaying. Furthermore it can
shown by symmetry arguments thatā(z)5a* (1/z* ) and
b̄(z)5b* (1/z* ), a is even inz, andb is odd. Finally, letting
n→2` in the Wronskian relation~11! yields that, for any
zPS1:

ua~z!u21ub~z!u25 )
n52`

`

~11uqnu2!. ~15!

Discrete spectrum.Note that ifz1 , uz1u.1 is a zero ofa,
then the functionsc(z1) and f(z1) are linearly dependent
i.e., there existsc1 such thatfn(z1)5c1cn(z1) for any n
8-2
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PZ. Accordingly, f and c are exponentially decaying a
unu→`. Since a is even, the zeros come in6 pairs. We
retain only the zeros with a non-negative real part, and nu
ber them from 1 toJ. The set of quantities$a(z),b(z),z
PS1;zj ,cj ,a8(zj ), j 51, . . . ,J% is the scattering data for th
spectral problem@Eq. ~4!#.

B. Time evolutions of the scattering data

The time equations for the scattering data are

a~ t,z!5a~ t0 ,z!, zPS1, ~16!

b~ t,z!5b~ t0 ,z!exp„iv~z!~ t2t0!…, zPS1, ~17!

cj~ t !5cj~ t0!exp„iv~zj !~ t2t0!…, j 51, . . . ,J, ~18!

wherev(z)522z22z22. Note thatv(z) is the linear dis-
persion relation of discrete linear Schro¨dinger equation. In-
deed the linear form of Eq.~1! is iqnt1qn111qn1

22qn

50, whose dispersion relation is obtained by lettingqn
5z2n exp(2ivt).

C. Inverse transform

Given the set of scattering data, we define

F̄~m!5
1

4ip R
gu

b̄

ā
~z!zm21dz2(

j 51

J

c̄j z̄j
m21 , ~19!

wherez̄j51/zj* , c̄ j5cj* z̄j
2/a8(zj )* , andgu is the positively

oriented unit circle. Then we compute the kernelK̄ as the
solution of the system:

K̄~n,n12p21!22F̄~2n12p21!

14 (
p8,p951

`

K̄~n,2n12p921!

3F̄* ~2n12p812p921!F̄~2n12p812p21!50.

~20!

This equation is the discrete analog of the Gel’fand-Levit
Marchenko integral equation. They are linear summat
equations. In such conditions, it can be proved@19# that

qn52K̄~n,n11!. ~21!

D. Conserved quantities

Conserved quantities can be worked out as in any in
grable system@21#.

Proposition II.1. The total mass

Ntotª(
n

log~11uqnu2! ~22!

and the kinetic energy
02660
-

-
n

-

Ekª22(
n

Re~qn* qn21! ~23!

are two of the infinite number of conserved quantities for
homogeneous Ablowitz-Ladik chain.

The derivation of the set of conserved quantities is ba
on the expansion of the analytic functionā(z) asz→0.

Lemma II.2. The function ā(z) has an expansion asz
→0,

log ā~z!.(
j 51

`

Cjz
2 j , ~24!

whereCj are time independent. In particular,

C152(
n

qn* qn21 . ~25!

Proof: The following arguments are taken from Ref.@21#.
It can be shown from the scattering problem that

log ā~z!5(
n

loggn~z2!, uzu<1, ~26!

wheregn satisfies

gn11~gn1221!2z2
qn11*

qn*
~gn1121!52z2qn11* qn .

~27!

These equations are established by relatingā(z) to the eigen-
function f̄ by ā(z)5 limn→`(2f̄2,nzn). As z→0, gn(z2)
has the expansion

gn~z2!5(
j 50

`

gn
( j )z2 j . ~28!

We then find from Eq.~27! that

gn.12z2qn21* qn222z4qn21* qn23~11uqn22u2!1•••.
~29!

Thus ā(z), analytic for uzu,1, has expansion~24! asz→0.
Further,Cj are time independent, sinceā(z) is time indepen-
dent. Setting Eqs.~29! and ~24! equal, one obtains the de
sired result.

It will be necessary below to express the mass and ene
in terms of scattering data.

Proposition II.3. Let us definec(z)ª log@11(ubu2/uau2)# for
zPS1. The total mass and the kinetic energy can be deco
posed into the sums of continuous parts and of discrete p

Ntot5
1

2ip R
gu

c~z!

z
dz1(

j 51

J

loguz j u2, ~30!

Ek5ReS 1

ip R
gu

c~z!

z3
dzD 12(

j 51

J

Re~z j̄2z j !. ~31!
8-3
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Proof: Although the arguments are quite standard, th
cannot be found in the literature for the Ablowitz-Lad
problem as far as I know, so I give some more detail for t
part. Let z j (uz j u.1) be the squares of the zeros ofa, j

51, . . . ,J. We also denotez j̄51/z j* . Then the functionA,

A~z!ªa~z!)
j 51

J
z22z j̄

z22z j

, ~32!

is analytic in uzu.1 and has no zero. Furthermore it co
verges to 1 asuzu→0. By Cauchy’s integral theorem we thu
have

1

2ip R
gu

logA~z!

z2z
dz50 ~33!

for any uzu,1. On the other hand, the functionĀ5Inv(A),

Ā~z!5ā~z!)
j 51

J
z222z j̄*

z222z j*
, ~34!

is analytic inuzu,1 and has no zero. Thus, for anyuzu,1,

1

2ip R
gu

log Ā~z!

z2z
dz5 log Ā~z!. ~35!

Summing yields

log Ā~z!5
1

2ip R
gu

log„Ā~z!A~z!…

z2z
dz, ~36!

or, in terms ofa and ā,

log ā~z!1(
j 51

J

log
z222z j̄*

z222z j*

5
1

2ip R
gu

logua~z!u2

z2z
dz2(

j 51

J

loguz j u2. ~37!

We expand this expression with respect toz→0 and collect
the terms for each power ofz. Applying lemma II.2 then
establishes the equations

05
1

2ip R
gu

logua~z!u2

z
dz2(

j 51

J

loguz j u2, ~38!

C11(
j 51

J

~z j* 2z j
21!5

1

2ip R
gu

logua~z!u2

z3
dz, ~39!

whereC1 is given by Eq.~25!. From the conservation rela
tion ~15!, for any zPS1 we haveuau2(z)5exp„Ntot2c(z)…
so that Eqs.~38! and ~39! also read like Eqs.~30! and ~31!.
02660
y

s

E. Soliton

Equation ~1! possesses soliton solutions, that is to s
waves that propagate at constant velocities with constant
velopes. These solutions are of the form

qns~ t !5
sinh~m!exp@ ik„n2x~ t !…1 ia~ t !#

cosh@m„n2x~ t !…#
, ~40!

where

x~ t !5x012t
sinh~m!

m
sin~k!, ~41!

a~ t !5a012tS cosh~m!cos~k!211
k sin~k!sinh~m!

m D .

~42!

The mass, velocity, and kinetic energy of the soliton are

Ns52m, Us52
sinh~m!

m
sin~k!,

~43!
Ek,s524 sinh~m!cos~k!,

respectively. The width of the envelope of the soliton is co
versely proportional to its mass. The soliton solution@Eq.
~40!# is associated with the following scattering data:

as~z!5
z22exp~ ik1m!

z22exp~ ik2m!
, bs~z!50. ~44!

a admits a unique pair of zeros in the outside of the u
circle that are denoted by exp(ik1m) and2exp(ik1m). The
corresponding Jost functions are

fns~z!5
zn

2 coshm~n212x!

3S as~z!em(n212x)1e2m(n212x)

„12as~z!…ze2 ik(n2x)2 ia D , ~45!

cns~z!5
z2n

2 coshm~n212x!

3S „12e22mas~z!…z21eik(n2x)1 ia

em(n212x)1as~z!e2m(n112x) D . ~46!

III. INHOMOGENEOUS ABLOWITZ-LADIK CHAIN

A. Random on-site potential

We consider a perturbed Ablowitz-Ladik equation with
nonzero right-hand side:

iqnt1qn111qn2122qn1uqnu2~qn111qn21!5«Rn~q!.

~47!

The small parameter«P(0,1) characterizes the amplitude o
the perturbation. Here we assume that
8-4
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Rn~q!5Vnqn , ~48!

which means that Eq.~47! can be derived from the Hamil
tonian

H522(
n

Re~qnqn11* !1(
n

~21«Vn!log~11uqnu2!.

~49!

Note that we could consider other kinds of perturbations
they satisfy the condition ‘‘Rn(q)qn* is real valued’’~which
implies that the system is conservative!. We shall study an-
other random problem in Sec. VI. In the framework of E
~48!, the total massNtot and the total energy defined by

EtotªEk1Ec , Ec5«(
n

Vn log~11uqnu2! ~50!

are conserved. Note thatuEtot2Eku is uniformly bounded by
«NtotzuVuz` . The site-dependent potentialV is assumed to be
a bounded, zero-mean, stationary, and ergodic sequenc
random variables. Its autocorrelation function is denoted

G~n!ªE@V0Vn#5E@Vn8Vn81n#, ~51!

whereE stands for the statistical average with respect to
stationary distribution ofV. We assume that the potential h
enough decorrelation properties so that the se
(n52`

` uG(n)u1/2 is well defined and finite. We can then in
troduce the Fourier transform of the autocorrelation funct
of the potentialV

d~v!ª (
n52`

`

G~n!exp~ inv!, ~52!

which is non-negative real valued since it is proportional
the power spectral density by the Wiener-Khintchine th
rem @22#. For instance, if the random variables are indep
dent and identically distributed~discrete white noise!, then
the spectrum of the potential is flat and given byd(v)5s2

5E@Vn
2# for any v.

We shall use the inverse scattering transform to study
problem. Indeed the random perturbation induces variati
of the spectral data. Calculating these changes we are ab
find the effective evolution of the field and calculate t
characteristic parameters of the wave. We shall be intere
in the effective dynamics of the soliton propagating ov
long timesT/«2. The total mass and energy are conserv
but the discrete and continuous components evolve du
the propagation. The evolution of the continuous compon
corresponding to the radiation will be found from the evo
tion equations of the Jost coefficients. The evolutions of
soliton parameters will then be derived from the conser
tion of the total mass and energy.

B. Evolution of the scattering data

We now describe the evolutions of the Jost coefficienta
and b during the propagation. They satisfy the exact eq
tions @23#
02660
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]a

]t
52 i«(

n

W„cn11~z!,F~qn!fn~z!…

W„c̄n11~z!,cn11~z!…
, ~53!

]b

]t
5 iv~z!b1 i«(

n

W„c̄n11~z!,F~qn!fn~z!…

W„c̄n11~z!,cn11~z!…
, ~54!

where F(qn)5(
R

n* (q) 0

0 Rn(q)
). These equations will be neede

below when calculating the radiative mass and energy g
erated by the moving soliton. After some algebra this syst
simplifies into

]a

]t
52 i«~ag11bg2!, ~55!

]b

]t
5 iv~z!b1 i«~2ag2* 1bg1!, ~56!

where

g1~ t !5(
n

c1,n11c2,n* Rn* ~q!1c2,n11c1,n* Rn~q!

Wn11
, ~57!

g2~ t !5(
n

Rn* ~q!c1,nc1,n112Rn~q!c2,nc2,n11

Wn11
, ~58!

Wn11~ t !5uc1,n11u21uc2,n11u25 )
m5n11

`

~11uqmu2!21.

~59!

The time independence ofuau21ubu2 for any zPS1 is con-
served by these equations, which holds true as soon as
total mass is preserved.

C. Adiabatic approximation

The adiabatic approximation consists of assuminga priori
that, while the soliton exists, its evolution and the one of
radiated wave do not interact. More precisely, we assu
that the time evolutions of the Jost coefficientsa andb given
by Eq. ~53! depend only on the components of the functio
g1 andg2 which are associated with the soliton. We can th
carry out calculations under this approximation, since it
duces the analysis which provide an expression of the s
tion qn . A posteriori, we check for consistency that this ap
proximation is actually justified in the asymptotic framewo
«→0. More exactly we show that the components of t
functionsg1 and g2 which correspond to the interplay be
tween the computed radiation and the soliton, or else wh
originate from the sole effect of the radiation, can be cons
ered as negligible terms for the soliton evolution.

D. Asymptotic regime

Let T.0. Let us denote byVT
« the set of realizations o

the potential (Vn)n such that the wave after propagation ov
@0,T/«2# consists of one soliton plus some radiation. W
denote bym« andk« the rescaled processes defined onVT

« by
8-5
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m«(t)5m(t/«2) and k«(t)5k(t/«2) ~i.e. the parameters o
the transmitted soliton at timet/«2), and on the complemen
tary setVT

«c by m«(t)50 andk«(t)50. We can now state
our main convergence result, whose proof is given in App
dix A.

Proposition III.1. Under the adiabatic approximation, th
following assertions hold true for anyT.0:

~1! lim inf «→0 P(VT
«)51.

~2! TheR2-valued process„m«(t),k«(t)…tP[0,T] converges
in probability to the R2-valued deterministic function
„m l(t),kl(t)…tP[0,T] which satisfies the system of ordina
differential equations

dm l

dt
5F~m l ,kl !, m l~0!5m0 ,

dkl

dt
5G~m l ,kl !, kl~0!5k0 .

~60!

The functionsF andG are equal to

F~m,k!52
1

2E0

2p

C~m,k,u!du, ~61!

G~m,k!52
1

2 sinh~m!sin~k!
E

0

2p

„cosh~m!cos~k!

2cos~2u!…C~m,k,u!du, ~62!

where the functionC is the mass density scattered by t
soliton with parameters (m,k) per unit time. The parameteru
is related to the spectral parameterz through z5eiu. The
exact expression ofC is the following:

C~m,k,u!5
p sinhm

16m coshS v1p

2m D 2

sin~k!

3
sin~v2 /2!4d~v2!

„cosh~m!2cos~2u2k!…2
, ~63!

where the functionsv1 andv2 are defined by

v1~m,k,u!5m
cosh~m!cos~k!2cos~2u!

sinh~m!sin~k!
,

v2~m,k,u!5v1~m,k,u!1k22u. ~64!

The first assertion of the proposition means that the ev
‘‘the transmitted wave consists of one soliton plus some
diation’’ occurs with very high probability for small«, while
the second assertion gives the effective evolution equatio
the parameters of the transmitted soliton in the asympt
framework«→0.
02660
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IV. EFFECTIVE EVOLUTION OF THE SOLITON
PARAMETERS

This section is devoted to the study of the evolutions
the parameters of the transmitted soliton. By proposit
III.1 these evolutions are given by Eq.~60!. We aim at ex-
hibiting the relevant characteristics of this deterministic s
tem of ordinary differential equations.

A. Linear regime in the approximation µ0™1

System~60! can then be simplified to a good approxim
tion:

dm

dt
52

d~2k!

2 sin~k!
m,

dk

dt
52

d~2k!

6

m3

tan~k!
,

~65!

with the initial conditions imposed by the incoming solito
m(0)5m0 andk(0)5k0. It thus appears that the velocityU
of the soliton@equal to 2 sin(k)sinh(m)/m.2 sin(k)# is almost
constant during the propagation, while the massN ~equal to
2m) decreases exponentially:

m~ t !.m0 expS 2
t

T1
D , T15

2 sin~k0!

d~2k0!
. ~66!

Accordingly the localization length that is defined for a so
ton with velocityU asL15UT1 is equal to

L15
4 sin~k0!2

d~2k0!
. ~67!

The spectrum of the radiation is concentrated around
spectral parameteru52k0/2 ~and 2k0/21p). This means
that the radiation oscillates as exp(2ik0n). More precisely,
the mass density of scattered wave is

CS u52
k0

2
1mxD5

pd~2k0!

2 cosh~px!2sin~k0!
. ~68!

It can be noted that, in the limit casem0→0, the incoming
soliton can be approximated by a linear wave packet:

qn~ t !.E
2`

1`

dkf̂0~k!eikn2 i4 sin2(k/2)t

with

f̂0~k!5
1

4
cosh21Xp

4 S k2k0

m0
D C. ~69!

Note that the dispersion relation for the linear discrete Sch¨-
dinger equation readsv(k)54 sin2(k/2). The spectrumf̂0
8-6
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of the soliton is sharply peaked aboutk0, so that the local-
ization length also reads asL15v(2k0)/d(2k0).

If k0!1, then we regain the well-known continuum lim
The continuum dispersion relation readsv(k)5k2. The
spectrum of the soliton has a carrier wave numberk0. Fur-
thermore the spectrum of the scattered wave packet is pe
about the spectral parameter2k0/2, which corresponds to
the wave number2k0. These statements are in agreem
with the linear approximation. The localization lengthL1
5v(2k0)/d(2k0) corresponds to the localization length of
monochromatic wave with wave numberk0 scattered by a
slab of linear random medium. We have thus recovered
results stated in~Ref. @24# theorem 4.1!, where the authors
showed that, in such a situation, for« small enough, the
transmission coefficientT« satisfies, with probability 1:

lim
L→`

1

L
loguT«u2~L !52

«2

L1
1O~«3!. ~70!

B. Nonlinear regime in the approximation µ0š1

System~60! can then be simplified:

dm

dt
52

3dS m

tan~k! Dp2e2m

64m coshS p

2 tan~k! D
2

sin~k!

,

~71!

dk

dt
52

3dS m

tan~k! Dp2e2m

64m coshS p

2 tan~k! D
2

sin~k!tan~k!

,

with the initial conditionsm(0)5m0 and k(0)5k0. The
mass density of the scattered wave is

C~u!5

dS m

tan~k! Dpe2m

8m coshS p

2 tan~k! D
2

sin~k!

sin4S m

tan~k!
1k22u D .

~72!

The soliton emits radiation whose spectrum covers all
quencies with a sin4 form centered atm/tan(k)1k modulo
2p. It can be readily checked that exp(m)cos(k) is constant
during the propagation, which means that the mass of
soliton converges to the limit valueNlim ,

Nlim52m l im52m012 log„cos~k0!…, ~73!

while the velocity of the soliton decreases to 0. Whenk
becomes small, system~71! reads, in simplified form,
02660
ed
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dm

dt
52

3dS m

k Dp2 expS 2m2
p

k D
16mk

,

~74!

dk

dt
52

3dS m

k Dp2 expS 2m2
p

k D
16mk2

.

Since m converges tom l im5m01 log„cos(k0)…, this means
that the decay ofk is governed by

dk

dt
52

3p2 exp~2m l im!

16m l im

dS m l im

k DexpS 2
p

k D
k2

. ~75!

The limit behavior for larget of the parameterk depends on
the high frequency behavior of the Fourier transform of t
autocorrelation function of the potentialV. The exact decay
rate of the velocity results from the competition between
termsd(m l im /k) and exp(2p/k) in Eq. ~75!. If the spectrum

FIG. 1. Mass and velocity of the soliton during the propagatio
The lines correspond to the theoretical values computed from
tem ~60!. We assume thats25

1
121022. The initial values of the

soliton parameters arem050.3 andk05p/4 ~a! and m050.6 and
k05p/4 ~b!. The velocity is almost constant, while the mass dec
exponentially.
8-7
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of the potentiald(v) decays slower than exp(2pv/mlim),
then the exponential term is the smallest one, and co
quently imposes the decay rate ofk:

k~ t !.
p

log t
. ~76!

This logarithmic rate actually represents the maximal de
of the velocity. Whatever the potentialV, the terms of the
right-hand sides of Eq.~75! have at least an exponential d
cay of the type exp(2p/k), which implies lim inft→` k(t)
3 log(t)>p. However, the decay rate may be much slow
For instance, assume that the spectrum ofV has Gaussian
shape so thatd(v)5s2exp(2lc

2v2). Then the velocity de-
creases as the square root of the logarithm oft:

FIG. 2. Mass and velocity of the soliton during the propagati
The lines correspond to the theoretical values computed from
tem ~60!. We assume thats25

1
121022. The initial values of the

soliton parameters arem051.2 andk05p/4 ~a! and m051.5 and
k05p/4 ~b!. In both pictures, the mass and velocity begin by d
caying almost linearly. After this transition regime, the pictur
become very different, although the initial values of the parame
are very close. In picture~a!, the velocity tends to a constant pos
tive value, and the mass decays exponentially to zero. In picture~b!,
the mass tends to a constant positive value, and the velocity de
to zero at logarithmic rate.
02660
e-

y

.

k~ t !.
m l iml c

Alog t
. ~77!

The decay rate (logt)21/2 is imposed by the shape of the ta
of the spectrum of the random potentialV. If the spectrum
decays faster than a Gaussian, then the regime correspon
to Eq. ~77! will be still slower. Conversely, if the spectrum
decays slower than any exponential, then one can only
serve regime~76!.

C. Numerical resolution of the effective system

In the above paragraphs we have reported two dom
which are stable with respect to the evolutions of the para
eters of the transmitted soliton. We aim at showing here t
these regimes are not only stable, but attractive. In or
to prove this statement, we are going to solve numerica
system ~60! for different incoming solitons, without any
assumption about the values of the initial parametersm0
and k0. For simplicity, in this section we assume that t
spectrum of the random potential is flatd(v)[s2, which

.
s-

-

rs

ys

FIG. 3. Mass and velocity of the soliton during the propagatio
The lines correspond to the theoretical values computed from
tem ~60!. We assume thats25

1
121022. The initial values of the

soliton parameters arem053 andk05p/4 ~a! and m056 andk0

5p/4 ~b!. The mass goes to the valueN012log@cos(k0)#5N0

20.69, and the velocity decays at a logarithmic rate.
8-8
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PROPAGATION OF SOLITONS IN A RANDOMLY . . . PHYSICAL REVIEW E63 026608
means that the potential (Vn)nPZ is a sequence of indepen
dent and identically distributed random variables ands2

5E@Vn
2#.

Figures 1–3 plot the evolutions of the parameters of
transmitted soliton as functions of the durationt. The param-
eterk0 is chosen at some fixed value for all figures, equa
p/4, but the initial massN052m0 varies from 0.6 to 12. The
striking point is that two different behaviors can be put in
evidence, and that they are separated from each other
critical value 2mc of the initial mass 2m0.

Whenm0,mc @Figs. 1 and 2~a!#, after a transition regime
where the mass and the velocity decrease as powers
velocity reaches a stable valueUlim . This limit value is very
close to the initial valueU0 whenm0!mc . Once the veloc-
ity is stable, the mass decreases exponentially with the lo
ization lengthUlim /s2; this regime was described in Se
IV A.

Whenm0.mc @Figs. 2~b! and 3#, after a transition regime
where both the mass and the velocity decrease, the m
reaches a stable valueNlim which is equal to N0
22 log„cos(k0)… if m0@mc . Once the mass is stable, the v
locity decreases asp/ log t, as described in Sec. IV B.

One can also note that the critical pointmc is unstable.
We practically always observe one of the limit behavio
described in Secs. IV A and IV B.

We would also like to comment upon the oscillations
the velocity that can be observed in the left picture of Fig
These oscillations are due to the discreteness, and
appear in the regime whenm.mc , but m is not very large,
so that system~71! is not strictly fulfilled. One must then
reconsider the original system~60!, and consider the
asymptotick→0 and consider thatm is of order 1. After
some algebra one establishes that system~60! can then be
simplified into

dm

dt
52

p sinh1/2~m!

64w~m!k1/2
dS w~m!

k DexpS 2
pw~m!

km Dh~m,k!,

~78!

dk

dt
52

p sinh1/2~m!

64mk3/2
dS w~m!

k DexpS 2
pw~m!

km Dh~m,k!,

where
02660
e

o

a

the

l-

ss

f
.
ey

h~m,k!5

cosX2w~m!

k
1

1

2
arctanS 2m

p D C
~114m2p22!1/4

14

cosXw~m!

k
1

1

2
arctanS m

p D C
~11m2p22!1/4

13,

w~m!5m„cosh~m!21…/sinh~m!.

The first two terms ofh(m,k) are responsible for the oscil
lations. Indeed they are of the form cos(w/k) with ~almost!
constantw, so they oscillate ask→0.

V. NUMERICAL SIMULATIONS

The results in the previous sections are theoretically va
in the limit case«→0, where the amplitudes of the pertu
bations go to zero and the size of the random system goe
infinity. In this section we aim to show that the asympto
behaviors of the soliton can be observed in numerical sim
lations in the case where« is small, more precisely smalle
than any other characteristic scale of the problem. We us
fourth-order Runge-Kunta method to simulate the perturb
nonlinear Schro¨dinger equation~47!. This numerical algo-
rithm provides accurate and stable solutions to a large c
of systems of ordinary and partial differential equations~Ref.
@25#, p. 346!. We checked the accuracy of the method
evaluating the quantitiesEk and N in the absence of a ran
dom potential («50). They were conserved to a relativ
error less than 1024.

Let Dt be the elementary time step. We denote the ini
wave solution by (qn

0)n50, . . . ,M21. By induction we
compute qj 11

ª@qn„( j 11)Dt…#n50, . . . ,M21 from qj

ª„qn( j Dt)…n50, . . . ,M21. Since the time domain is planned t
be very long, of order«22, the solution will propagate
over distances of order«22, so that we would have to tak
a computational domain of sizeM;«22. In order to
deal with a tractable problem, we use a shifting compu
tional domain which is always centered at the center
mass of the solution. Moreover, we impose boundaries
this domain which absorb outgoing waves. This can
readily achieved by adding a complex potential which
smooth so as to reduce reflections. We choose to subst
the complex potentialṼ5V2 iVabs for the random potentia
V,
Vabs,n55
Vabsmaxsin2S p

2

M02n

M0
D if 0<n,M0

0 if M0<n<M212M0

Vabsmaxsin2S p

2

M01n112M

M0
D if M212M0,n<M21,

~79!
8-9



l

a
a

e
ki-
e

om
s

ted

at

us
t
he
olu-

ton
st
us

. 4,

on
ro
o
-

r
elo

sit

he
is

tial
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whereM21 ~0! is the left ~right! end of the computationa
domain, and@0,M0# (@M212M0 ,M21#) is the left~right!
absorbing slab.

We assume in this section that the random potentialVn is
a sequence of independent and identically distributed v
ables, which obey uniform distributions over the interv
@21/2,1/2#, so that d(v)[s251/12, We take«50.1. In
such conditionss2«25 1

12 1022. The timeT will be chosen so
large ~of order «22) that we can observe the effect of th
small perturbation«Vn . We measure the mass and the
netic energy, of the solution during the propagation, as w
as the envelope of the transmitted solution, that we can c
pare with the envelope of the incident soliton. The ma
N( j Dt) and the energyEk( j Dt) are computed at timej Dt
from the data (qn( j Dt))n50, . . . ,M21 as

N~ j Dt !52 (
n50

M21

log„11uqn~ j Dt !u2
…,

FIG. 4. Mass and velocity of the soliton during the propagati
The thick lines correspond to the theoretical values computed f
system~60!. The thin lines correspond to a numerical simulation
the Ablowitz-Ladik equation, with a random potential with an am
plitude equal to«50.1. In picture~a! the initial values of the soliton
parameters arem051 andk05p/4, which correspond to the linea
regime where the mass decays exponentially to zero and the v
ity tends to a constant positive value. In picture~b! the initial values
of the soliton parameters arem052 andk05p/4, which correspond
to the nonlinear regime where the mass tends to a constant po
value while the velocity logarithmically decays to zero.
02660
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Ek~ j Dt !522 ReS (
n50

M22

qn~ j Dt !qn11* ~ j Dt !D . ~80!

We finally deal with the set of data„Ek( j Dt)…j in order to
compute the velocity of the soliton, which can be compu
by Eq. ~43!:

U~ j Dt !5
A16 sinh2„N~ j Dt !/2…2Ek

2~ j Dt !

N~ j Dt !
. ~81!

We perform different simulations where the initial wave
time t50 is a pure soliton with parameters (m0 ,k0) centered
at xs5M /2. In the first one we simulate the homogeneo
nonlinear Schro¨dinger equation~1!, which admits as an exac
solution ~40!. We can therefore check the accuracy of t
numerical method, since we can see that the computed s
tion maintains a very close resemblance to the initial soli
~data not shown!, while the mass and velocity are almo
constant. The other simulations are carried out with vario
values of the initial parameters (m0 ,k0) and different real-
izations of the random potential with«50.1. The simulated
evolutions of the soliton parameters are presented in Fig

.
m
f

c-

ive

FIG. 5. Intensity profiles of the solutions at different times. T
coordinaten is shifted around the center of mass. The initial wave
a soliton with parametersm051 andk05p/4. The same data are
plotted on a linear scale in picture~a!, and on a logarithmic scale in
picture ~b!. The cutoff that can be observed in picture~b! at the
boundaries of the domain originates from the absorbing poten
Vabs.
8-10
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PROPAGATION OF SOLITONS IN A RANDOMLY . . . PHYSICAL REVIEW E63 026608
and compared with the theoretical evolutions given by E
~60! on the scalet/«2.

It thus appears that the numerical simulations are in v
good agreement with the theoretical results. The simula
masses follow very closely the theoretical ones. This
partly due to the fact that the perturbed equation prese
the total mass,

Ntot52m1
1

2pE0

2p

c~eiu!du, ~82!

wherec(•) is the density of the scattered mass. This impl
stability for the parameterm and the mass of the soliton.
also appears that the velocity follows theoretical curves,
also presents quickly varying fluctuations around the theo
ical values. This is in fact not surprising. Indeed the p
turbed equation preserves the total energy, which can be
pressed from Eqs.~31! and ~50! as

Etot524 sinh~m!cos~k!1
1

pE0

2p

c~eiu!cos~2u!du

1«(
n

Vn log~11uqnu2!. ~83!

The last term is negligible in the asymptotic framework«
→0, but when«50.1 it gives rise to local fluctuations of th
parameterk and of the instantaneous velocity of the solito

Figure 5 plots the envelopes of the solution at differe
times corresponding to one of the simulations, which sho
that the wave keeps the basic form of a soliton althoug
loses some mass. All these results confirm that system~60!
describes with accuracy the transmission of a soliton i
nonlinear Ablowitz-Ladik chain with small random perturb
tions.

VI. A SECOND RANDOM PROBLEM

We would like to briefly present a second model that d
scribes a random Ablowitz-Ladik chain that could be of
terest for applications to discrete spatial solitons in wa
guide arrays, for example. We have considered a rand
on-site potential in the above sections, that correspond
Hamiltonian system~49!. However, it often happens that th
randomness originates from the coupling coefficients, so
the underlying Hamiltonian is

H522(
n

~11«Ln!Re~qnqn11* !12(
n

log~11uqnu2!,

~84!

where Ln are real-valued random variables. In the plan
waveguide framework@10#, the tunnel coupling coefficien
11«Ln is proportional to the gap between the guidesn and
n11. Note that we have normalized the average coup
coefficient to 1, and that«Ln stands for the zero-mean fluc
tuations. If we denote the transverse coordinate of thenth
guide byln , we have 11«Ln5ln112ln . The system that
governs the evolution ofqn is
02660
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iqnt1„qn11~11«Ln!1qn21~11«Ln21!…~11uqnu2!22qn

50. ~85!

In such conditions the total mass and the energy define
Eq. ~84! are preserved. We can then perform the very sa
study as in the case of a random on-site potential, and c
to the same conclusion as the one stated in proposition I
The only difference comes from the fact that the express
of the scattered mass density is not Eq.~63!, but a more
intricate expression. Nevertheless we can study this exp
sion in some relevant configurations.

We have found that the mass density scattered by a s
ton with initial parametersk0 andm0!1 has the same shap
as one corresponding to the random potential configura
~up to a factor 4). The spectrum of the radiation is conc
trated around the spectral parameteru52k0/2:

CS u52
k0

2
1mxD5

2pd~2k0!

cosh~px!2 sin~k0!
. ~86!

Accordingly the localization length for a low-amplitude so
ton with velocityU52 sin(k0) is equal to

L25
sin~k0!2

d~2k0!
. ~87!

If the random coupling coefficientsLn are of the form 1
1«Ln5ln112ln , with independent random variablesln
with variance«2s2, thend(2k0)54 sin(k0)

2s2. This implies
that the localization length is independent of the soliton
rameters:L25s22/4.

On the other hand, we have found that in the strong n
linear regimem0@1 the mass of the soliton converges to t
valueN012 log„cos(k0)… while the velocity slowly decays to
zero. This regime is very similar to the one discussed in S
IV B for the random on-site potential.

VII. CONCLUSIONS

We have applied two types of random perturbations to
integrable lattice nonlinear Schro¨dinger equation. We have
studied the propagation of a soliton with massN052m0 and
velocity U052 sinh(m0)m0

21 sin(k0) in these random nonlin-
ear chains. We have found that there exists a critical valu
the initial mass of the soliton below which we observe
exponential decay of the mass, and above which an orig
nonlinear regime prevails which involves the convergence
the mass of the soliton to a calculable positive value and
slow decay of the velocity.

More exactly, in case of a small initial massN0, we have
proved that the velocity of the soliton is almost consta
while the mass of the soliton decays exponentially with
size of the system. We have computed the localization len
for both types of perturbations. In the case of a large ini
massN0, we have shown that the mass of the soliton co
verges to the valueN012 log„cos(k0)…. Furthermore the ve-
locity is found to decrease at logarithmic or sublogarithm
rates to 0.
8-11
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APPENDIX: DERIVATION OF THE EFFECTIVE
SYSTEM

In this section we outline the main steps of the proof
proposition III.1, which closely follows the strategy deve
oped in Ref.@8#, and we shall underline the key points.

~1! Prove the stability of the zero of the Jost coefficient.
The zero corresponds to the soliton. This part strongly re
e

n
s

s
F

-

of
-
er
r

b

02660
f

s

on the analytical properties ofa in the outside of the unit
circle, and it is very similar to the corresponding part in R
@8#. Basically we apply Rouche´’s theorem so as to prove tha
the number of zeros is constant. This method is efficien
prove that the zero is preserved, but it does not bring con
on its precise location in the outside circle. This step is
sufficient to compute the variations of the soliton paramete

~2! Compute the amount of radiation, and then the var
tions of the soliton parameters. Under the adiabatic approxi
mation, we solve the evolution equations~53! so that we
obtain a closed-form expression of the ratiob/a. More ex-
actly, the scattering datab̃/a(t,z)5b/a(t,z)e2 iv(z)t at time
t0 /«2 is given by
b̃

a S t0

«2
,zD 52 i«E

2`

t0 /«2

g3e2 iv(z)tdt, ~A1!

g3~ t,z!5(
n

Vnz2n11e2 ik„n2xs(t)…2 ias(t) sinh~m!g4* „n2xs~ t !,z… ~A2!

g4~y,z!5
„12e22mas~z!…2z22eik1m2e2my2as

2~z!e22m(y11)2as~z!~11e22m!

4 cosh@m~y21!#cosh~my!cosh@m~y11!#
, ~A3!

as~z!5
z22eik1m

z22eik2m
, ~A4!
li-

ly
d
an-

erse
dia-
the

the
wherexs(t) and as(t) are the position of the center of th
soliton and the phase of the soliton at timet defined by Eq.
~A8!. From Eq.~A1! we can estimate the amount of radiatio
which is emitted during some time interval in terms of ma
and energy thanks to Eqs.~30! and~31!. We are then able to
deduce the evolution equations of the soliton parameter
using the conservations of the total mass and energy.
times of orderO(1), sinceNtot andEtot are conserved, the
variationsD(•••) of the relevant quantities are linked to
gether by the relations

052Dm1
1

2pE Dc~eiu!du, ~A5!

0524D„sinh~m!cos~k!…1
1

pE0

2p

Dc~eiu!cos~2u!du

1«D~Ec!. ~A6!

Dc(eiu) is of order«2, but the last term in the expression
the total energy is of order«. Thus our strategy is not effi
cient for estimating the variations of the soliton paramet
for times of orderO(1). Let us nowconsider times of orde
O(«22). Dc(eiu) is now of order 1, while the last term in
the expression of the total energy is bounded above
2«NzuVuz` , which is uniformly negligible as«→0. Thus we
s

by
or

s

y

can efficiently compute the long-time behaviors of the so
ton parameters in the asymptotic framework«→0, when the
last term in the expression of the total energy is uniform
negligible. Using probabilistic limit theorems, we then fin
that the soliton parameters converge in probability to nonr
dom functions which satisfy system~60!.

~3! Compute the form of the scattered wave. Given the
scattering data, we can reconstruct the wave by the inv
scattering technique presented in Sec. II C. Under the a
batic approximation, neglecting terms of higher order,
total wave is given by the sumq(t/«2)5qS(t/«2)
1qL(t/«2), where qS is a soliton of mass 2m(t/«2) and
velocity 2 sinh(m)sin„k(t/«2)…/m:

qS,nS t

«2D 5
sinh~m!exp@ ik~n2xs!1 ias#

cosh@m~n2xs!#
. ~A7!

xs andas are, respectively, the position and the phase of
soliton at timet/«2

xs5
1

m
logS 1

sinh~m!
uc̄r~ t/«2!u D , as5arg„c̄r~ t/«2!…1kxs ,

~A8!
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andqL admits the expression

qL,nS t

«2D 5
21

2ip R
gu

S b̃

a
D *

~z!z2n

3S 12
z2e2 ik1m

12z2e2 ik2m
xm~xs2n!D

3S 12
1

12z2e2 ik2m
xm~xs2n!D dz

1
sinh2~m!

2ip

exp„2ik~n2xs!12ias…

cosh2„m~n2xs!…

3 R
gu

b

a
~z!

z22neik2m

~z22eik2m!2
dz, ~A9!

where xm(y)5e2m sinh(m)„11tanh(my)…. qS is the soliton
part of the total wave. The first component ofqL represents
the scattered wave packet, with a correction in the neighb
hood of the solitonn;xs . In front of the solitonn@xs , the
radiation is

qL,n.
21

2ip R
gu

S b̃

a
D *

~z!z2ndz, ~A10!
E.
,

ez

D

nd

02660
r-

while behind the solitonn!xs the radiation is

qL,n.
2e22m

2ip R
gu

S b̃

a
D *

~z!z2n
~12z2e2 ik1m!2

~12z2e2 ik2m!2
dz.

~A11!

The second component ofqL represents the interaction be
tween the soliton and the scattered wave packet, whic
only noticeable in the neighborhood of the soliton. This
sult is not surprising. Roughly speaking, the support of
scattered wave packet lies in an interval with length of or
«22. Since thel 2 norm is bounded by the conservation of th
total mass, we can expect that the amplitude of the radia
is of order«. More exactly, using the same arguments as
lemma 4.2@8#, it can be rigorously proved that the amplitud
of the radiated wave packet can be bounded above
K«u log«u.

~4! Check a posteriori the adiabatic approximation. The
final part of the proof consists of checkinga posteriori the
adiabatic hypothesis, that is to say proving that the radia
wave packet determined here has no noticeable influenc
the evolutions@Eqs. ~53!# of the Jost coefficientsa and b.
One must estimate the components of the functionsg1 and
g2 given by Eqs.~57! and ~58! which have been neglecte
until now, and which are related to the interplay between
soliton and the radiation, on the one hand, and which are
to the sole effect of the radiation on the other hand. These
technical calculations which are based upon the mixing pr
erties of processV.
F.
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